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A continuous medium with distributed heat sources and variable thermophysical charac- 
teristics may be located in a multitude of different thermal states which are steady state 
points of equilibrium or oscillatory processes. For some configurations of the region 
occupied by the medium an analysis has been performed of thermal state stability as a func- 
tion of source intensity, thermophysical properties, boundary conditions, and dimensions of 
the region. The method of stability an~-ys• ~ - -'- is based on reduction of the uzmens-un~• ........... of 
the problem of infinite dimensions by means of projections of solutions into the space of 
eigenfunctions. We will present results of calculating the thermal states of a cylinder of 
finite length and their stability. 

I. Formulation of the r t u u - u m  . . . . . . . .  and "'nethuu-- = of Solution. A continuous mediu~r~ with distri- 
buted heat sources occupies one of the regions in space bounded by a parallelepiped, located 
between two concentric spheres, located between two coaxial c• ............... uy--nue~s, closed by 
plane faces p~rp~nd•177 to the cylinder axes, and interacts with the surrounding m~ulum. 
rm1__ Lne radii of the inner spheres and cylinder may . . . . . .  zero. as~,eu ~qua•  It is . . . . . . .  that in regions 
formed by bodies of rotation the temperature depends solely on the linear coordinates. The 
problem to be studied is that of thermal stability of the medium as a function of source 
intensity, thermophysical properties of the medium boundary conditions, and form and size of 
the region occupied by the meditm-~. The thermal state of the . . . . . .  is described by . . . .  
thermal conductivity equation with appropriate boundary and initial conditions [I]: 

O0 I I  hn l~a  0 h.~2 3 - oO 
0-"T-= n=l  i=lTX/ hhE(O)-~x~ -~- q](O) + q)l(X); (I ~ -• 

Hij(O, OO/OxO = 0, i = 1--3 ,  ] = t ,  2; (1.2) 

o\ 
O(x, 0) = 0. ( 1 .  ~ j 

H e r e  x = ( x l ,  x2 ,  x 3 ) ;  8 ,  x i ,  x a r e  d i m e n s i o n l e s s  t e m p e r a t u r e ,  c o o r d i n a t e  i ,  a nd  t i m e ;  h i 
are metric coefficients; 0(8) is the source function; ~I(X) is a function of coordinate; 
~(O) ----x(O)/~(0) is the ratio of the thermal diffusivity coefficients; Hij(O, 80/3x i) is the 
boundary conditic~a of the third kind of point j and coordinate i. 

a~(O)/aO > 0, while the functions ~(O), ~(O) can be represented in It is assumed that 
the form of series 

I ~(e)I E a'le! (1.4) 
(O) I = i>~o bi 

(b i are constants, a i are functions of the parmi~eter p, defined i n  the vicinity of zero). 

~]en with consideration of Eq. (1.4), Eq. (I.I) takes on the form 

00/0~ = G(O, ~, A) = L~ O + GI(O, ~t, h), ( 1 . 5 )  

where 
3 

L ~ = b  o h71 o hF2 hh +a~(~); G ( O , ~ , A ) = I I  h ~  • 
n=l i~l ~qx/ n=I  

m 
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~ o hT~ ~ bra ' O om+l  jr  a ie  i -[- A (a 0 -~- (Pl (x)); 

A is found from the relationship Gz(0, 0, 4) = ao-~P~(x). 

In accordance with the theory of the central manifold [2] the infinite-dimensional prob- 
lem of Eqs. (1.2) and (1.5) at A = 0 can be reduced to a space of finite dimensions without 
loss of information relative to stability of the solutions. The dimensionality of the prob- 
lem can be reduced by constructing one manifold from the set of central manifolds, or by the 
projection method of [3, 4], the latter method being extensible to A # 0. 

The sequence of operations in the projection method is to initially construct the func- 
tional space of the operator L~ and to determine the stability of the zeroth solution. Then 
the solutions of bifurcation problem (1.5) (4 = 0) and the problem of Eq. (1.5) with the 
defect (A # 0) that destroys the bifurcation are projected into this space and the :stability 
of their solutions determined. 

The possibility of expanding the projection method to the case Gz(0, p, 4) ~ 0 follows 
from the results of [2]. 

2. Space of the Operator L~ and Stability of the Zeroth Solution. Analysis of stavz~z,y+ 
of the zeroth solution of Eq. r~ ~ ...... <~.J) with conditions (1.2), (1.3) reduces to a pLuulem of the 
SLuLm--,,zouv• type, involving uetermz~atzoh of the eigenfunctions of the operator L~. The 

. . . . . . . . . . .  ' -  ~ 2  , , -  I, 2, spectr~-n of the operator L-~ consists only of discrete e•177 u n - e~ - U0A n, 

__1 ..... ..., wn~Le I~i satisfy the equation (I~-E - L0)O(x) = 0 (E is a unft matrix andO(x)the solution 

of the equation LeO = 0 which satisfies conditions (1.2)). 

We then identify the largest eigenvalue o I with the parameter ~ and the zeroth solution 
is stable if ~ = a I - b01~ < 0. Depending on boundary conditions (1.2) the eigenvalues o n 

n , _ 7  . . . . . . . . . .  j may be simple, or mumtmp• so that each of them uur~e~ponus to eigenvectors YLn, Y~n, " o ", 

m l _ _  " - .  i _ -,,- maxima-t1 geometric multiplicity of u n y~.. ~.e - is " = 8. If "~ = I and o n ~ are szmp• the 

~Lauz•177 of L l t ~  solutions of Eq. (• with uu,ultzuns . . . . . . . . .  (~• (1.3) can be carried out ill 
the same manner as in [5]. 

wra[,mla-uhas177177163 transforms make it po~zu• --'~ to Or-'~'Lnogo~a• -- ~ " - ~'-L.e- system of vectors 
vij (I i i i N, 1 ! J < ~) such that to the maxim-m-~-~ eigenvalue o~ there correspond vectors 

~ .  = ~,~, ~ = ~ - E <~,, ~ (x)> II~,,il-~-,,. (2 .  l )  

Here <Yij, Ykm > is the scalar product of the vectors Yij, Ykm; p(x) is a weight function, 

dependent on the coordinate system chosen; [Igiyll = <~u, ~yP(z)> The space of the vectors 

Ykn (I i k i 8, n ~ I) is a Gilbert space with scalar product <(g~, 9~), (g~n, N~m)> =<9,~, ~> + 

(~i, F-~*~> (Y~ln are eigenvectors of the conjugate operator L~*). 

Before analyzing the bifurcation solution of Eq (I.=~ ...... . J ~ ,  we s,uu• make clear that the 
analysis results are valid only for the case where the algebraic multiplicity factor of the 
eigenvalues o n does not exceed the geometric, although the projection method is also appli- 
cable to that case. 

3. Bifurcation Solution. The stability of the bifurcation solution can be carried out 
in a functional space for which N = 2. 

The solutionof Eq. (1.5) with conditions (1.2), (1.3) for A = 0can be found in the 
form of series 

= ~ ~ ' ( 3 . 1 )  

where ~ = <(@, @), (Y11, Y21) > is the amplitude; O~, ~n are coefficients of the expansion 
requiring determination. 
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Substituting Eq. (3.1) 
leads to the equations 

in Eq. (1.5) and equating terms with independent powers of 

Lo@ ~ = 0; 

OL o 
Lo@ ~ + 2~  --s @x + 

OZG (0, O, O) 
O0 z O~ = O, 

3.  ~ a /  

( 3 .  "~ 

plus equations for higher powers of e. 

It follows di_rectly from Eq. (3 ~ .......... _ _ .~ that the solution can be any linear comu•177 of 
the vectors ya~, y=~, O x = YlI + ~Y21, where ~ is a problem parm]aeter requiring determination. 

uultult • ' Ykz Equation (3.3) is soluble when and only when for k = I, 2 the . . . . . . . . . .  <LoO 2 > = 

0 are satisfied, these following from the Fredholm alternative theorem. Hence it follows 

that 

/ 0~  0 - , \  / e ~ ( ~ , o )  ~ - , \  
2 ~ \ - ' ~ 7 7 . @ x , Y ~ 1 / + \ ~  k oO ~ @a, Y ~ /  = 0 ,  k =  t , 2 .  ( 3 . 4 )  

The presence of two independent variables >~, 
to system (3.4). Substitution in these equations of expressions for @z, 

yields two equations of conic sections in the plane (>~, ~): 

g ~ ( ~ , r  = cn~ ~ + c ~  + c~a~l~ + C~#l + c~ = 0; 

g ~ ( ~ . , )  = c~t, ~ + c ~ ,  + c ~ a ~ +  c~a~ + c~ = 0. 

guarantees the existence of a solution 
y~ (k = i, 2) 

D.J) 

( 3 . 6 )  

Here < --.> < > Cll = 0,5 02G 06) 2(0' 0, 0) Y~I, Yl1 ; C12 = 9 6  (0,00 ~0' 0) Y n Y m  Y~** ; 

/ ' O L  o - - ,  ~ /OLo - - ,  
Cla = N"~t t  Y21, .{/11/; 6'14 = N-~~  ~11, Y l l / ;  

) < 0 ,5 /0~G (0, O, O) -~  -* 0,5 o~G (0, O, O) Y2~, Y21 ; c ~ =  ,~- ~ Yn, Yn ; c ~ =  - o@ 

(o, o, o )  - - - , >  - , -* \ 
6"22 = N ~ E  Y,lY21, V2__; C2a= ~"~-ff21 Y21/; 

/OLO - --* ~ 0,5 /02G (0, 0, O) ~121, Y : I>"  
C24 = "~-'~"~ Yn, Y21/; 6'2~ = ~'N OOz 

~- . ~a.6) are not • view of the transforms of Eq (2.1) Cla = c24 = 0, and if Eqs. (3.5), t, 
1 _ _ 1  . . . .  T ~  [ ~  L ' ~  ~" . . . . .  1 . . . . .  _ 1  --  m l _  

�9 U J  •  degenerate then Eq. (3.5) is always a marauu• ~nd ~q. ~a ~lw~y~ d nyp~bu• • 
f-- i f-- "I 0 %  "- __ _1 .... -. 

points of intersection of curves (3.5), (3.6) (~v), -~n)) (n = •  i n  the p• (~l, ~) 

are solutions of Eq. (3.3). Depending on the sign of the discriminant of the cubic equation 

equivalent to system (3.5), (3. ~uj 

Bn~ 3 ~- B21~ 2 ~- B ] ~  + B 0 = 0 , ( 3 . 7 )  

( B  3 = ~, B2 = (C12 __ C14C21C23 l )  C;11, B1 = (c15 - -  CI~C22C-231) C-ll 1, B o = - -  c~4 c25c2~ac-fla); t h e  system o f  Eqs .  

( 3 . 5 ) ,  ( 3 . 6 )  h a s  e i t h e r  t h r e e  . . . . .  Le~-  s o l u t i o n s ,  o r  one  r e a l ,  and two c o m p l e x - c o n j u g a t e .  I f  
the discriminant is equal to zero, then two or all three of the real roots coincide. 

The stability of the solution of Eq. ~• 5) must be analyzed at each intersection point 
' ~ ( n  of curves (3.5), (3.6) (~i vnt, ), n = 1-3. To do this it is necessary to write the 

functions gi(D1, ~) (i = I, 2) in the form of functions of the paraaneter ~. Combining Eqs. 
= -~}, (3.1), (3.5), (" ~ . . . .  I, we write Eqs. (3 ~J.6) a.o~ unu using the normalization condition g 

in the form 

-~ -~ (3 8) ~', 0,) = ~ (~ .~2~.7~+ c ~  + ~ , ~ . ~  + ~ . ~ 7 ~ +  c ~ 7  ~) = o, ~ = ~ , 2  �9 
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Lyapunov's theorem on stability in the first approximation [6] states that Eq. (1.5) is 
stable, if the real portions of the eigenvalues of the Jacobi matrix 

I = a n  a ~ /  ( a n  = 0g-~(/~)/0~t~ -~, a~ = 0g~ (9)/0 (1~11-1), a21 = 092 (~s "1, a22 = 0g 2 (~)/0 ( ~ 1 1 ) )  
a21 a22 ] 

a r e  n e g a t i v e .  A s t r i c t  p r o o f  o f  t h i s  a s s e r t i o n  w i t h  c o n s i d e r a t i o n  o f  a t t r a c t i o n  o f  t h e  
s o l u t i o n  f r o m  R ~ t o  R 2 was p r e s e n t e d  in  [3 ,  7 ] .  

C o n s i d e r i n g  t h a t  a t  e a c h  p o i n t  ( -g~(n) ,  ~ ( n ] )  f o r  s m a l l  ~ we h a v e  d e t  I = ~Sde t  I ( ~ ( n ) ,  

~ ( n ) )  + O [ p ~ l ,  we w r i t e  t h e  s t a b i l i t y  c o n d i t i o n  f o r  s t e a d y  s t a t e  e q u i l i b r i u x a  

and for periodic cycles 

(" s (n) ~ts~ (")) < 0, det I (tt~ n), , ("))  > 0; max k ~ 1 

l + 

Here s~ (n), s~(n) are eigenvalues of the matrix l(-~(n), }(n)); 

(3.9) 

(3.~0 

cn) aij =a i j ( ,~ i~  ~n = ( a e ( 4 1  ~ -  .~.~-(n)~"]~ -- ,(Ira r~">~l~ - -  a(")~.. + 

+ 4 Re .~(~) ~.~r~" ~tJ~) --  4 Ira a~ ) Im a~); 

~ = 2 Re ( a ~ )  - -  a (~)~,,., , Im (a(~) - -  a ~  )) + 4 Re a ~  ) Im a ~  ) + 4 Re a ~  ) Im ~ .  

Condition (3.9) is valid only for transverse intersection of curves (3. =~ "- J~, (3.~) in 

the plane (D~, }). This requires that det I0 # 0, where 

If det I0 = 0, then at the point of intersection of curves (3 =x .J j, (3.6) a conm~on tangent 
exists and higher order approaches are required to study stability. In the presence of 
only one real root of Eq. (3..7) the intersection is always abrupt, since if the curves are 
tangent we already have two real roots. 

Cor~aon to all real solutions is instability if det I < 0, and stability to one side of 
the point ~ = 0 if det I > 0. Since two consecutive points of intersection on the arcs of the 
conic solutions (3.5) (3. "-~ ., u~ have opposite signs of det I, one solution is always unstable 
for any ~, wl~ile the other is stable to one side of the point ~ = 0. Hence it follows that 
if the system car, be in several steady thermal states, among those there will always be 
stable and unstable ones. 

~o• must consider the special case For complex . . . . . . . . . .  of Eqs. (3.5) i~ ,_~ , u~ of Eq. k -J �9 one 

(3. ~ l~j max(~ Re sz(n), ~ Re s~(n)) = 0 ~ ..... ~tne nu•177 being simple), at which bifurcation of 

generation of the limiting cycle occurs -Hopf bifurcation [2]. 

As an example we w.•177 consider a cylinder occupying the region 0 < x I < ~, 
0 i x~ i 2~, 0 i x3 J r. The matrix coefficients hl = I, h 2 = x3, h~ = I. The boundary 
conditions of Eq. (1.3) can be written as 

OXq "~ ~'110 [XI=O = O, ~X 1 -~ (%120 l:cl=/ = O, 

ao O I~=0 < oo, ~ + ~3~0 l ~ y  = O. 

With such boundary conditions the . . . . . . . . . . . . .  ~genv~• of the operator mD are doubled~ lue 
maximum eigenvalue and the corresponding vectors are equal to ~ = a~ ~o~, 
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~ r-2, Yli = I~(vir-ix3) sin qlxl, y:i = I0(vlr-lx3)cos Nixl, where Ii(zlr-lx~) are Bessel 

functions of the first sort and order i; ~]~,vi are the smallest positive roots of the 
equations 

ctg ~ll  ~ ( ama'~ = ~i + ra~3Io (vi) Vii i %~-  % \ n~ ) '  - ( h )  = 0. 

The orthogonalized vectors of the operators L~, Lp* corresponding to o~ have the form 

Yil = yl~X3 ~ .  ii Y~i ---- Y21xa Yil 
i = l  " =  

(x~ = p(x) is the weight function mentioned above). 

Data for calculation were chosen with the goal of completely encompassing possible 
thermal states of the cylinder. For the source function the expression of [8] ~(O) = 

exp(O(l + 6@) -I ) was used, with the first three terms in its expansion being a0 = I, al = I, 

a 2 = 0.5 - $ (where $ is a parmaeter). Calculations performed for various values of ~, bl 

for fixed ~il = I, ~12 - ~32 = 0, $ = 0, b0 = 1 yielded results valid for any r. 

I. bl = 0.I, L = I.I. The solutions of Eqs. (3.5), (3.6) are points (~(o; ~(~))=(--0.783; 

-- 14,556), (p?); ~(2))=(8A8.10 -2- 0.567i; 0.106 + 1.860i). The third point is the complex conjugate of 

the second, so will not be considered further. These points correspond to eigenvalues of 

the Jacobs matrix (s?); s(2 I)) -- (?.80.10-2; -- 2.521), (sT); s~ ~)) = (9.93. i0-~ -- 0.193/; -- 0.283 -- 0.154i), 

which indicates that all three solutions are unstable to either side of the point ~ = 0. 

2. bl = 0.i, ~ = I.~o~-'. We have one real and two complex solutions (p(11); ~(i)) =(--IA03; 

-- 1t,154), (~(~*); ~(2)) = (5 .27 .10  - 2 -  0.336/; --  6.27. 10 -4 + 1.729i), c o r r e s p o n d i n g  t o  (s?); s(2 ~)) = ( 0 . t 7 8 ; -  1.771), 

(s(x2); s~ 2)) = (--0.122i; =0.247- 0.1670.. The real solution is unstable for any p, while the 

periodic solution is a limiting cycle (Fig. I, curve I). 

3. b~ = 0 . I ,  ~ = 1 . 5 .  The s o l u t i o n s  ( ~ ? ) ; ~ ; ( ' ) = ( - - 1 . 3 8 2 ;  --8.689),  ( ~ " ) ; ~ ( 2 ) ) = ( - - 1 .  20"10.-2- 

O A 0 3 t ; -  0.216 + t.587i) c o r r e s p o n d  t o  (s(~); s~ ~)) = ( 0 . 3 9 7 ; -  t.186), (s~2); s(2~))=( - t .02.10-2--0.229i ; --0,338--  

7.84.10-si). The stationary solution is unstable (Fig. 2, curve I), while the periodic one 

is stable for D > 0 (Fig. I, curve 2, Fig. 3, curve I). 

4. bl = 0.I, ~ = 1.54. A stationary equilibrium point exists (~i(i); ~(1)) = (-1.436; 

-8.478) together with oscillatory regimes (p~(2); ~(=) = (-2.74 "I0-~ - 7-01'I0-~i; ~.262 + 

1 . 5 6 0 i ) .  For  t h e s e  (s(il); s(2 ~)) = (0,45t; - -1 . t27) ,  (s(i2); s$ "~)) = (--0,234i;  --0,366 + 2 .25 .10-3i )  , S O  t h a t  

the stationary solution is unstable (Fig. 2, curve 2), and the periodic one is a stable limit- 

ing cycle (Fig. 3, curve ~. 

5. bl = 0.I, ~ = 1.6. For the solutions (~(~~ -1"532; --8"280)'(~ (~2); ~(2))=(5"33" 

10 - ~ -  2.55. t0-2i; - -  0,335 + t.515i) we have  (S(~); s(21)) = (0.547; --  1.058), (si2); s(~ ~)) = (1.30.  i0 -2 --  0.244i; 

~ 0 . 4 0 6  + t . 7 3 .  t0-~i ) .  Bo th  r e g i m e s  ( t h e  s t e a d y  s t a t e  o f  F i g .  2, c u r v e  3 and t h e  p e r i o d i c  of  

Fig. 3, curve 3) are unstable. 

6. bl = 0.I, s = 2. For the stationary point (~(~); ~(~)) = (-4.043; -13.457) and the 

p e r i o d i c  r e g i m e  (~(2); 9(~))= ( - -0 .268 + O.i07g; 0.728 + 0.9520 we have  (s(~); s(~ ~  (3Ai9;  --1.876), (s  (~)" 

s ( ~ ) ) _ - - ( O A O t - - 0 . 3 4 6 i ; - - 0 . 6 2 8 + 6 . 4 8 ,  t0-~i) .  All regimes are unstable. The periodic solution 

is shown in Fig. 1 (curve 3). 

346 



Fig. I 
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7. b I = 0.I, ~ = 3.5. All three solutions are steady state equilibrium points 

(~?) ;  r = ( _  i6 .613;  - -  18.119), ( ~ ) ;  ~(2)) = ( _  0.387; - -  0. i69),  (~(~a); r = ( _  0.409; - -  0.335) ( F i g .  4 a ,  

b ) .  F o r  t h e s e  (sit); s~ 1)) = ( 8 4 . 3 3 7 ;  - -  19.206), (57' ;  57 )) = (0.57t;  - -  0.6t8),  (s'(~a); s(23)) = (t .030; 0 . 3 5 9 ) .  The  

first two points are unstable for any ~, while the third is stable for ~ < O. The solutions 

for (~I(2); ~(~)), (~i(3); r are shown in Fig. 2 (curves 4, 5). 

8. bl = O, ~ = 1.5. Of three stationary equilibrium points (~(~); ~(~))=(1.348; ~.897), 

(2). ~ , ~ ( 2 ) )  = (_  1.t45; --4A75), (~(3); ,<3~)= (_  0.490;-- 1.t39) (Fig.  5) one i s  s t ab l e  (s~(2) ;  :~:(2)) = 

(0.388; O.IBg) for ~ < 0 and two are unstable ($11); s?))=(0.381; --0.411), (s(la); s(~ 3)) =(0.326; 

--8.81-I0 -~) for any ~. In Figs. 4, 5 curves 1 correspond to Eq. (3.5) and curves 2 to Eq. 

(3 .6) .  

4. Isolated Solutions. In the general case, for exan~ple, ~(0) obeys the Arrehnius law, 

the operator G(O, ~, A) contains a parameter A # 0 which destroys the bifurcation at the 
point ('0, ~) = O, O, so that the solutions which branch at this point decay into isolated 
solutions. For A = 0 the solution 6) = 0 of the equation G(O, ~, 0 = 0 always loses 
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q- 

-1, 

-6  
t 

Fig. 5 

stability upon transition of D through zerof From this, it follows by Hopf's assertion [2] 
that the point (O, ~) = (0, 0) is a double bifurcation point. 

* ~ tlI~U~ ~111 . . . . . . . .  > # 0 (k  = I ,  2) ~nu . . . .  t h e  i m p l i c i t  f u n c t i o n  . . . . . . . .  l , e  i n e q u a l i t y  - a . ( u ,  0,  O ) / o a ,  y 

g u a r a n t e e  t h e  e x i s t e n c e  o f  a s o l u t i o n  G(O, ~, A) = 0 f o r  h = b(D, e ) ,  w,himh can be o b t a i n e d  

in  t h e  fo rm o f  a s e r i e s  in  powers  o f  ~, e .  

Twofo ld  d i f f e r e n t i a t i o n  o f  G(O, ~, h) w i t h  r e s p e c t  t o  ~, e a t  t h e  p o i n t  (~ ,  ~-~ -- 

( 0 ,  0) and a s e  o f  t h e  i d e n t i t y  3G(@, D, A(~, 0 ) ) / ~  = 0 which  f o l l o w s  f rom t h e  d e f i n i t i o n  o f  

t h e  d o u b l e  p o i n t  y i e l d s  a s y s t e m  o f  e q u a t i o n s  

+ o~c oa (o, o, o) o ~  ( 4 .  I) o~ (o, o, o) o~o (o, o, o) 0~ + O; 
O0 082 002 3& 08z 

aa (o, o, 0) 0'A ( 4 . 2 )  OG (0, O, O) 020 0"6 (0, O, O) Ox ..} - -  = O, 
O-------O~ 8tt o~e + 8~ oO 8A o~t Oe 

which is ~uxubxe ....... when and only when for k = I, 2 we have the condition 

020 - * )  / 020 - ,  \ 
-~2 '  Yhl = ~ 0 - - ~ '  Y,hl// = O, 

which together with Eqs. (4.1), (4.2) allows finding the first two non-zero terms in the 

expansion of the function ~(~, e) in powers of ~, e: 

A ( ~ ' e ) = - -  1 [<O2G (0, O, 0>I002@~, Y;1)e2 .<02G(0'0'0>/OO6~@l' V~I> ] 
-- -- - m-7727~- + L <0G (0, 0, 0)/ A,~hl > A ~.~-~0-~ ~ ~1~ ~tt~J, 

k =  t ,2 .  

(4.3) 

�9 ~• ) (1.5) in the plane Equations (4 3) define isolated solutions of Eqs. .2), (~.o , 

- a~ Eq. .... application of (~i, ~). Substitution of expressions for O1, Y*kl (k = i, in (4.3) mnu 

the normalization condition e = I leads to the system 

- ,  t,. 4) 
gx(~l,~) + A <a 0 + ~ x ( x ) , y n )  = 0; ~"" 

g~ (~,  , )  + A <~0 + ~ (~), ~ )  = o, ( 4 . 5 )  

where gi(ul, 4) (i = i, 2) are found from Eqs. (3.5), (3.6). The coefficients of the cubic 

equation equivalent to system (4.4), (4.5) are as follows: 

Bo = - -  (c~ + A <ao + ~i (x), Y~b) c~c~Tc~ 1, 
--* --1 B~ = ( ~  - ~ c ~  ~ + A <~o + ~ (x), y~)) ~,~ 

(B2, B 3 are the same as in Eq. (3.7)). 
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The syste m of Eqs. (4.4), (4.5) does not differ in structure fromEqs. (3.5), (3.6), 
so that the further analysis of stability of the solutions of Eq. (1.5) with conditions (1.2), 
(1.3) is analogous to that presented in section 3 for the bifurcation solution. The distri- 
bution of real and complex solutions of Eq. (1.5) for A # 0 is of the same form as for A = 0, 
although not necessarily identical. 

Assuming that the properties of the material and the region which it occupies are speci- 
fied, it makes sense to consider boundary conditions (1.2) and the function ~(x) as types 
of regulation instruments which allow control of the distribution of thermal states of the 
medium and their strength as attractors. 

Thus, according to the results obtained, the presence of a set of thermal states, both 
steady and periodic, in which the medi~u~ can be found stimulates the thought that uncontrolled 
thermal processes (explosions, fires) ...... occur wn~cu during processing, storage, and accumulation 
of ..... ~-~- ' . . . . . . . . . .  ~- *nau@llal3 in the and milling industries, etc. may occur cn~miual, atomic, coal, peLru• 
not only because of breaking of rules (metric, mass, temperature, concentration), but also 
in a "legal" manner, if such rules are developed without consideration of all possible thermal 
states. 
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